
Dectate Documentation
Release 0.10

Martijn Faassen

April 25, 2016

Contents

1 Using Dectate 3
1.1 Introduction . 3
1.2 Features . 4
1.3 App classes . 4
1.4 Creating a directive . 4
1.5 The Anatomy of a Directive . 8
1.6 Depends . 9
1.7 config dependencies . 10
1.8 before and after . 11
1.9 grouping actions . 12
1.10 Additional discriminators . 13
1.11 Composite actions . 14
1.12 with statement . 15
1.13 importing recursively . 16
1.14 logging . 16
1.15 querying . 17
1.16 query tool . 17
1.17 Sphinx Extension . 18
1.18 __main__ and conflicts . 18

2 API 21

3 Developing Dectate 29
3.1 Install Dectate for development . 29
3.2 Running the tests . 29
3.3 Running the documentation tests . 30
3.4 Building the HTML documentation . 30
3.5 Various checking tools . 30

4 History of Dectate 31

5 CHANGES 33
5.1 0.10 (2016-04-25) . 33
5.2 0.9.1 (2016-04-19) . 33
5.3 0.9 (2016-04-19) . 33
5.4 0.8 (2016-04-12) . 34
5.5 0.7 (2016-04-11) . 34
5.6 0.6 (2016-04-06) . 34

i

5.7 0.5 (2016-04-04) . 34
5.8 0.4 (2016-04-01) . 34
5.9 0.3 (2016-03-30) . 34
5.10 0.2 (2016-03-29) . 35
5.11 0.1 (2016-03-29) . 35

6 Indices and tables 37

Python Module Index 39

ii

Dectate Documentation, Release 0.10

Dectate is a Python library that lets you construct a decorator-based configuration system for frameworks. Configura-
tion is associated with class objects. It supports configuration inheritance and overrides as well as conflict detection.

Contents 1

Dectate Documentation, Release 0.10

2 Contents

CHAPTER 1

Using Dectate

1.1 Introduction

Dectate is a configuration system that can help you construct Python frameworks. A framework needs to record some
information about the functions and classes that the user supplies. We call this process configuration.

Imagine for instance a framework that supports a certain kind of plugins. The user registers each plugin with a
decorator:

from framework import plugin

@plugin(name="foo")
def foo_plugin(...):

...

Here the framework registers as a plugin the function foo_plugin under the name foo.

You can implement the plugin decorator as follows:

plugins = {}

class plugin(name):
def __init__(self, name):

self.name = name

def __call__(self, f):
plugins[self.name] = f

In the user application the user makes sure to import all modules that use the plugin decorator. As a result, the
plugins dict contains the names as keys and the functions as values. Your framework can then use this information
to do whatever you need to do.

There are a lot of examples of code configuration in frameworks. In a web framework for instance the user can declare
routes and assemble middleware.

You may be okay constructing a framework with the simple decorator technique described above. But advanced
frameworks need a lot more that the basic decorator system described above cannot offer. You may for instance want
to allow the user to reuse configuration, override it, do more advanced error checking, and execute configuration in a
particular order.

Dectate supports such advanced use cases. It was extracted from the Morepath web framework.

3

http://morepath.readthedocs.org

Dectate Documentation, Release 0.10

1.2 Features

Here are some features of Dectate:

• Decorator-based configuration – users declare things by using Python decorators on functions and classes: we
call these decorators directives, which issue configuration actions.

• Dectate detects conflicts between configuration actions in user code and reports what pieces of code are in
conflict.

• Users can easily reuse and extend configuration: it’s just Python class inheritance.

• Users can easily override configurations in subclasses.

• You can compose configuration actions from other, simpler ones.

• You can control the order in which configuration actions are executed. This is unrelated to where the user uses
the directives in code. You do this by declaring dependencies between types of configuration actions, and by
grouping configuration actions together.

• You can declare exactly what objects are used by a type of configuration action to register the configuration –
different types of actions can use different registries.

• Unlike normal decorators, configuration actions aren’t performed immediately when a module is imported.
Instead configuration actions are executed only when the user explicitly commits the configuration. This way,
all configuration actions are known when they are performed.

• Dectate-based decorators always return the function or class object that is decorated unchanged, which makes
the code more predictable for a Python programmer – the user can use the decorated function or class directly
in their Python code, just like any other.

• Dectate-based configuration systems are themselves easily extensible with new directives and registries.

• Dectate-based configuration systems can be queried. Dectate also provides the infrastructure to easily construct
command-line tools for querying configuration.

1.3 App classes

Configuration in Dectate is associated with special classes which derive from dectate.App:

import dectate

class MyApp(dectate.App):
pass

1.4 Creating a directive

We can now use the dectate.App.directive() decorator to declare a directive which executes a special con-
figuration action. Let’s replicate the simple plugins example above using Dectate:

@MyApp.directive('plugin')
class PluginAction(dectate.Action):

config = {
'plugins': dict

}
def __init__(self, name):

4 Chapter 1. Using Dectate

Dectate Documentation, Release 0.10

self.name = name

def identifier(self, plugins):
return self.name

def perform(self, obj, plugins):
plugins[self.name] = obj

Let’s use it now:

@MyApp.plugin('a')
def f():

pass # do something interesting

@MyApp.plugin('b')
def g():

pass # something else interesting

We have registered the function f on MyApp. The name argument is ’a’. We’ve registered g under ’b’.

We can now commit the configuration for MyApp:

dectate.commit(MyApp)

Once the commit has successfully completed, we can take a look at the configuration:

>>> sorted(MyApp.config.plugins.items())
[('a', <function f at ...>), ('b', <function g at ...>)]

What are the changes between this and the simple plugins example?

The main difference is that plugin decorator is associated with a class and so is the resulting configuration, which
gets stored as the plugins attribute of dectate.App.config. The other difference is that we provide an
identifier method in the action definition. These differences support configuration reuse, conflicts, extension,
overrides and isolation.

1.4.1 Reuse

You can reuse configuration by simply subclassing MyApp:

class SubApp(MyApp):
pass

We commit both classes:

dectate.commit(MyApp, SubApp)

SubClass now contains all the configuration declared for MyApp:

>>> sorted(SubApp.config.plugins.items())
[('a', <function f at ...>), ('b', <function g at ...>)]

So class inheritance lets us reuse configuration, which allows extension and overrides, which we discuss below.

1.4.2 Conflicts

Consider this example:

1.4. Creating a directive 5

Dectate Documentation, Release 0.10

class ConflictingApp(MyApp):
pass

@ConflictingApp.plugin('foo')
def f():

pass

@ConflictingApp.plugin('foo')
def g():

pass

Which function should be registered for foo, f or g? We should refuse to guess and instead raise an error that the
configuration is in conflict. This is exactly what Dectate does:

>>> dectate.commit(ConflictingApp)
Traceback (most recent call last):

...
ConflictError: Conflict between:
File "...", line 4
@ConflictingApp.plugin('foo')

File "...", line 8
@ConflictingApp.plugin('foo')

As you can see, Dectate reports the lines in which the conflicting configurations occurs.

How does Dectate know that these configurations are in conflict? This is what the identifier method in our action
definition did:

def identifier(self, plugins):
return self.name

We say here that the configuration is uniquely identified by its name attribute. If two configurations exist with the
same name, the configuration is considered to be in conflict.

1.4.3 Extension

When you subclass configuration, you can also extend SubApp with additional configuration actions:

@SubApp.plugin('c')
def h():

pass # do something interesting

dectate.commit(MyApp, SubApp)

SubApp now has the additional plugin c:

>>> sorted(SubApp.config.plugins.items())
[('a', <function f at ...>), ('b', <function g at ...>), ('c', <function h at ...>)]

But MyApp is unaffected:

>>> sorted(MyApp.config.plugins.items())
[('a', <function f at ...>), ('b', <function g at ...>)]

6 Chapter 1. Using Dectate

Dectate Documentation, Release 0.10

1.4.4 Overrides

What if you wanted to override a piece of configuration? You can do this in SubApp by simply reusing the same
name:

@SubApp.plugin('a')
def x():

pass

dectate.commit(MyApp, SubApp)

In SubApp we now have changed the configuration for a to register the function x instead of f. If we had done this
for MyApp this would have been a conflict, but doing so in a subclass lets you override configuration instead:

>>> sorted(SubApp.config.plugins.items())
[('a', <function x at ...>), ('b', <function g at ...>), ('c', <function h at ...>)]

But MyApp still uses f:

>>> sorted(MyApp.config.plugins.items())
[('a', <function f at ...>), ('b', <function g at ...>)]

1.4.5 Isolation

We have already seen in the inheritance and override examples that MyApp is isolated from configuration extension
and overrides done for SubApp. We can in fact entirely isolate configuration from each other.

We first set up a new base class with a directive, independently from everything before:

class BaseApp(dectate.App):
pass

@BaseApp.directive('plugin')
class PluginAction2(dectate.Action):

config = {
'plugins': dict

}
def __init__(self, name):

self.name = name

def identifier(self, plugins):
return self.name

def perform(self, obj, plugins):
plugins[self.name] = obj

We don’t set up any configuration for BaseApp; it’s intended to be part of our framework. Now we create two
subclasses:

class OneApp(BaseApp):
pass

class TwoApp(BaseApp):
pass

As you can see OneApp and TwoApp are completely isolated from each other; the only thing they share is a common
BaseApp.

We register a plugin for OneApp:

1.4. Creating a directive 7

Dectate Documentation, Release 0.10

@OneApp.plugin('a')
def f():

pass

This won’t affect TwoApp in any way:

dectate.commit(OneApp, TwoApp)

>>> sorted(OneApp.config.plugins.items())
[('a', <function f at ...>)]
>>> sorted(TwoApp.config.plugins.items())
[]

OneApp and TwoApp are isolated, so configurations are independent, and cannot conflict or override.

1.5 The Anatomy of a Directive

Let’s consider the directive registration again in detail:

@MyApp.directive('plugin')
class PluginAction(dectate.Action):

config = {
'plugins': dict

}
def __init__(self, name):

self.name = name

def identifier(self, plugins):
return self.name

def perform(self, obj, plugins):
plugins[self.name] = obj

What is going on here?

• We create a new directive called plugin on MyApp. It also exists for its subclasses.

• The directive is implemented with a custom class called PluginAction that inherits from
dectate.Action.

• config (dectate.Action.config) specifies that this directive has a configuration effect on plugins.
We declare that plugins is created using the dict factory, so our registry is a plain dictionary. You provide
any factory function you like here.

• _init_ specifies the parameters the directive should take and how to store them on the action object. You can
use default parameters and such, but otherwise __init__ should be very simple and not do any registration or
validation. That logic should be in perform.

• identifier (dectate.Action.identifier()) takes the configuration objects specified by config
as keyword arguments. It returns an immutable that is unique for this action. This is used to detect conflicts and
determine how configurations override each other.

• perform (dectate.Action.perform()) takes obj, which is the function or class that the decorator is
used on, and the arguments specified in config. It should use obj and the information on self to configure
the configuration objects. In this case we store obj under the key self.name in the plugins dict.

Once we have declared the directive for our framework we can tell programmers to use it.

8 Chapter 1. Using Dectate

Dectate Documentation, Release 0.10

Directives have absolutely no effect until commit is called, which we do with dectate.commit. This performs the
actions and we can then find the result MyApp.config (dectate.App.config).

The results are in MyApp.config.plugins as we set this up with config in our PluginAction.

1.6 Depends

In some cases you want to make sure that one type of directive has been executed before the other – the configuration
of the second type of directive depends on the former. You can make sure this happens by using the depends
(dectate.Action.depends) class attribute.

First we set up a foo directive that registers into a foos dict:

class DependsApp(dectate.App):
pass

@DependsApp.directive('foo')
class FooAction(dectate.Action):

config = {
'foos': dict

}
def __init__(self, name):

self.name = name

def identifier(self, foos):
return self.name

def perform(self, obj, foos):
foos[self.name] = obj

Now we create a bar directive that depends on FooDirective and uses information in the foos dict:

@DependsApp.directive('bar')
class BarAction(dectate.Action):

depends = [FooAction]

config = {
'foos': dict, # also use the foos dict
'bars': list

}
def __init__(self, name):

self.name = name

def identifier(self, foos, bars):
return self.name

def perform(self, obj, foos, bars):
in_foo = self.name in foos
bars.append((self.name, obj, in_foo))

We have now ensured that BarAction actions are performed after FooAction action, no matter what order we use
them:

@DependsApp.bar('a')
def f():

pass

@DependsApp.bar('b')

1.6. Depends 9

Dectate Documentation, Release 0.10

def g():
pass

@DependsApp.foo('a')
def x():

pass

dectate.commit(DependsApp)

We expect in_foo to be True for a but to be False for b:

>>> DependsApp.config.bars
[('a', <function f at ...>, True), ('b', <function g at ...>, False)]

1.7 config dependencies

In the example above, the items in bars depend on the items in foos and we’ve implemented this dependency in the
perform of BarDirective.

We can instead make the configuration object for the BarDirective depend on foos. This way BarDirective
does not need to know about foos. You can declare a dependency between config objects with the
factory_arguments attribute of the config factory. Any config object that is created in earlier dependencies of this
action, or in the action itself, can be listed in factory_arguments. The key and value in factory_arguments
have to match the key and value in config of that earlier action.

First we create an app with a FooAction that sets up a foos config item as before:

class ConfigDependsApp(dectate.App):
pass

@ConfigDependsApp.directive('foo')
class FooAction(dectate.Action):

config = {
'foos': dict

}
def __init__(self, name):

self.name = name

def identifier(self, foos):
return self.name

def perform(self, obj, foos):
foos[self.name] = obj

Now we create a Bar class that also depends on the foos dict by listing it in factory_arguments:

class Bar(object):
factory_arguments = {

'foos': dict
}

def __init__(self, foos):
self.foos = foos
self.l = []

def add(self, name, obj):

10 Chapter 1. Using Dectate

Dectate Documentation, Release 0.10

in_foo = name in self.foos
self.l.append((name, obj, in_foo))

We create a BarAction that depends on the FooAction (so that foos is created first) and that uses the Bar
factory:

@ConfigDependsApp.directive('bar')
class BarAction(dectate.Action):

depends = [FooAction]

config = {
'bar': Bar

}

def __init__(self, name):
self.name = name

def identifier(self, bar):
return self.name

def perform(self, obj, bar):
bar.add(self.name, obj)

When we use our directives:

@ConfigDependsApp.bar('a')
def f():

pass

@ConfigDependsApp.bar('b')
def g():

pass

@ConfigDependsApp.foo('a')
def x():

pass

dectate.commit(ConfigDependsApp)

we get the same result as before:

>>> ConfigDependsApp.config.bar.l
[('a', <function f at ...>, True), ('b', <function g at ...>, False)]

1.8 before and after

It can be useful to do some additional setup just before all actions of a certain type are performed, or just afterwards.
You can do this using before (dectate.Action.before()) and after (dectate.Action.after())
static methods on the Action class:

class BeforeAfterApp(dectate.App):
pass

@BeforeAfterApp.directive('foo')
class FooAction(dectate.Action):

config = {
'foos': list

1.8. before and after 11

Dectate Documentation, Release 0.10

}
def __init__(self, name):

self.name = name

@staticmethod
def before(foos):

print "before:", foos

@staticmethod
def after(foos):

print "after:", foos

def identifier(self, foos):
return self.name

def perform(self, obj, foos):
foos.append((self.name, obj))

@BeforeAfterApp.foo('a')
def f():

pass

@BeforeAfterApp.foo('b')
def g():

pass

This executes before just before a and b are configured, and then executes after:

>>> dectate.commit(BeforeAfterApp)
before: []
after: [('a', <function f at ...>), ('b', <function g at ...>)]

1.9 grouping actions

Different actions normally don’t conflict with each other. It can be useful to group different actions together in a group
so that they do affect each other. You can do this with the group_class (dectate.Action.group_class)
class attribute. Grouped classes share their config and their before and after methods.

class GroupApp(dectate.App):
pass

@GroupApp.directive('foo')
class FooAction(dectate.Action):

config = {
'foos': list

}
def __init__(self, name):

self.name = name

def identifier(self, foos):
return self.name

def perform(self, obj, foos):
foos.append((self.name, obj))

We now create a BarDirective that groups with FooAction:

12 Chapter 1. Using Dectate

Dectate Documentation, Release 0.10

@GroupApp.directive('bar')
class BarAction(dectate.Action):

group_class = FooAction

def __init__(self, name):
self.name = name

def identifier(self, foos):
return self.name

def perform(self, obj, foos):
foos.append((self.name, obj))

It reuses the config from FooAction. This means that foo and bar can be in conflict:

class GroupConflictApp(GroupApp):
pass

@GroupConflictApp.foo('a')
def f():

pass

@GroupConflictApp.bar('a')
def g():

pass

>>> dectate.commit(GroupConflictApp)
Traceback (most recent call last):

...
ConflictError: Conflict between:

File "...", line 8
@GroupConflictApp.bar('a')

1.10 Additional discriminators

In some cases an action should conflict with multiple other actions all at once. You can take care of this with the
discriminators (dectate.Action.discriminators()) method on your action:

class DiscriminatorsApp(dectate.App):
pass

@DiscriminatorsApp.directive('foo')
class FooAction(dectate.Action):

config = {
'foos': dict

}
def __init__(self, name, extras):

self.name = name
self.extras = extras

def identifier(self, foos):
return self.name

def discriminators(self, foos):
return self.extras

1.10. Additional discriminators 13

Dectate Documentation, Release 0.10

def perform(self, obj, foos):
foos[self.name] = obj

An action now conflicts with an action of the same name and with any action that is in the extra list:

example
@DiscriminatorsApp.foo('a', ['b', 'c'])
def f():

pass

@DiscriminatorsApp.foo('b', [])
def g():

pass

And then:

>>> dectate.commit(DiscriminatorsApp)
Traceback (most recent call last):

...
ConflictError: Conflict between:

File "...", line 2:
@DiscriminatorsApp.foo('a', ['b', 'c'])

File "...", line 6
@DiscriminatorsApp.foo('b', [])

1.11 Composite actions

When you can define an action entirely in terms of other actions, you can subclass dectate.Composite.

First we define a normal sub directive to use in the composite action later:

class CompositeApp(dectate.App):
pass

@CompositeApp.directive('sub')
class SubAction(dectate.Action):

config = {
'my': list

}

def __init__(self, name):
self.name = name

def identifier(self, my):
return self.name

def perform(self, obj, my):
my.append((self.name, obj))

Now we can define a special dectate.Composite subclass that uses SubAction in an actions
(dectate.Composite.actions()) method:

@CompositeApp.directive('composite')
class CompositeAction(dectate.Composite):

def __init__(self, names):
self.names = names

14 Chapter 1. Using Dectate

Dectate Documentation, Release 0.10

def actions(self, obj):
return [(SubAction(name), obj) for name in self.names]

We can now use it:

@CompositeApp.composite(['a', 'b', 'c'])
def f():

pass

dectate.commit(CompositeApp)

And SubAction is performed three times as a result:

>>> CompositeApp.config.my
[('a', <function f at ...>), ('b', <function f at ...>), ('c', <function f at ...>)]

1.12 with statement

Sometimes you want to issue a lot of similar actions at once. You can use the with statement to do so with less
repetition:

class WithApp(dectate.App):
pass

@WithApp.directive('foo')
class SubAction(dectate.Action):

config = {
'my': list

}

def __init__(self, a, b):
self.a = a
self.b = b

def identifier(self, my):
return (self.a, self.b)

def perform(self, obj, my):
my.append((self.a, self.b, obj))

Instead of this:

class VerboseWithApp(WithApp):
pass

@VerboseWithApp.foo('a', 'x')
def f():

pass

@VerboseWithApp.foo('a', 'y')
def g():

pass

@VerboseWithApp.foo('a', 'z')
def h():

pass

1.12. with statement 15

Dectate Documentation, Release 0.10

You can instead write:

class SuccinctWithApp(WithApp):
pass

with SuccinctWithApp.foo('a') as foo:
@foo('x')
def f():

pass

@foo('y')
def g():

pass

@foo('z')
def h():

pass

And this has the same configuration effect:

>>> dectate.commit(VerboseWithApp, SuccinctWithApp)
>>> VerboseWithApp.config.my
[('a', 'x', <function f at ...>), ('a', 'y', <function g at ...>), ('a', 'z', <function h at ...>)]
>>> SuccinctWithApp.config.my
[('a', 'x', <function f at ...>), ('a', 'y', <function g at ...>), ('a', 'z', <function h at ...>)]

1.13 importing recursively

When you use dectate-based decorators across a package, it can be useful to just import all modules in it at once. This
way the user cannot forget to import a module with decorators in it.

Dectate itself does not offer this facility, but you can use the importscan library to do this recursive import. Simply do
something like:

import my_package

importscan.scan(my_package, ignore=['.tests'])

This imports every module in my_package, except for the tests sub package.

1.14 logging

Dectate logs information about the performed actions as debug log messages. By default this goes to the
dectate.directive.<directive_name> log. You can use the standard Python logging module function
to make this information go to a log file.

If you want to override the name of the log you can set logger_name (dectate.App.logger_name) on the
app class:

class MorepathApp(dectate.App):
logger_name = 'morepath.directive'

16 Chapter 1. Using Dectate

http://importscan.readthedocs.org/en/latest/
https://docs.python.org/library/logging.html#module-logging

Dectate Documentation, Release 0.10

1.15 querying

Dectate keeps a database of committed actions that can be queried by using dectate.Query .

Here is an example of a query for all the plugin actions on MyApp:

q = dectate.Query('plugin')

We can now run the query:

>>> list(q(MyApp))
[(<PluginAction ...>, <function f ...>),
(<PluginAction ...>, <function g ...>)]

We can also filter the query for attributes of the action:

>>> list(q.filter(name='a')(MyApp))
[(<PluginAction object ...>, <function f ...>)]

Sometimes the attribute on the action is not the same as the name you may want to use in the filter. You can use
dectate.Action.filter_name to create a mapping to the correct attribute.

By default the filter does an equality comparison. You can define your own comparison function for an attribute using
dectate.Action.filter_compare.

If you want to allow a query on a Composite action you need to give it some help by defining
xs:attr:dectate.Composite.query_classes.

1.16 query tool

Dectate also includes a command-line tool that lets you issue queries. You need to configure it for your application.
For instance, in the module main.py of your project:

import dectate

def query_tool():
make sure to scan or import everything needed at this point
dectate.query_tool(SomeApp.commit())

In this function you should commit any dectate.App subclasses your application normally uses, and then provide
an iterable of them to dectate.query_tool(). These are the applications that are queried by default if you
don’t specify --app. We do it all in one here as we can get the app class that were committed from the result of
App.commit().

Then in setup.py of your project:

entry_points={
'console_scripts': [

'decq = query.main:query_tool',
]

},

When you re-install this project you have a command-line tool called decq that lets you issues queries. For instance,
this query returns all uses of directive foo in the apps you provided to query_tool:

$ decq foo
App: <class 'query.a.App'>

File ".../query/b.py", line 4

1.15. querying 17

Dectate Documentation, Release 0.10

@App.foo(name='alpha')

File ".../query/b.py", line 9
@App.foo(name='beta')

File ".../query/b.py", line 14
@App.foo(name='gamma')

File ".../query/c.py", line 4
@App.foo(name='lah')

App: <class 'query.a.Other'>
File ".../query/b.py", line 19
@Other.foo(name='alpha')

And this query filters by name:

$ decq foo name=alpha
App: <class 'query.a.App'>

File ".../query/b.py", line 4
@App.foo(name='alpha')

App: <class 'query.a.Other'>
File ".../query/b.py", line 19
@Other.foo(name='alpha')

You can also explicit provide the app classes to query with the --app option; the default list of app classes is ignored
in this case:

$ bin/decq --app query.a.App foo name=alpha
App: <class 'query.a.App'>

File ".../query/b.py", line 4
@App.foo(name='alpha')

You need to give --app a dotted name of the dectate.App subclass to query. You can repeat the --app option
to query multiple apps.

Not all things you would wish to query on are string attributes. You can provide a conversion func-
tion that takes the string input and converts it to the underlying object you want to compare to using
dectate.Action.filter_convert.

A working example is in scenarios/query of the Dectate project.

1.17 Sphinx Extension

If you use Sphinx to document your project and you use the sphinx.ext.autodoc extension to document your
API, you need to install a Sphinx extension so that directives are documented properly. In your Sphinx conf.py add
’dectate.sphinxext’ to the extensions list.

1.18 __main__ and conflicts

18 Chapter 1. Using Dectate

http://www.sphinx-doc.org

Dectate Documentation, Release 0.10

Import-time side effects are evil

This scenario is based on the one described in Application programmers don’t control the module-scope codepath
in the Pyramid design defense document. If you’re curious, look under scenarios/main_module in the
Dectate project for a Dectate version.
Dectate makes a different compromise than Venusian – it reports an error if a directive is executed because of
a double import, so it won’t get you into trouble. But since Dectate’s directives cause registrations to happen
immediately (but defer configuration), you can dynamically generate them inside Python function, which won’t
work with with Venusian.

In certain scenarios where you run your code like this:

$ python app.py

and you use __name__ == ’__main__’ to determine whether the module should run:

if __name__ == '__main__':
import another_module
dectate.commit(App)

you might get a ConflictError from Dectate that looks somewhat like this:

Traceback (most recent call last):
...

dectate.error.ConflictError: Conflict between:
File "/path/to/app.py", line 6
@App.foo(name='a')

File "app.py", line 6
@App.foo(name='a')

The same line shows up on both sides of the configuration conflict, but the path is absolute on one side and relative on
the other.

This happens because in some scenarios involving __main__, Python imports a module twice (more about this).
Dectate refuses to operate in this case until you change your imports so that this doesn’t happen anymore.

How to avoid this scenario? If you use setuptools automatic script creation this problem is avoided entirely.

Fooling Dectate after all

It is possible to fool Dectate into accepting a double import without conflicts, but you’d need to work hard. You
need to use a global variable that gets modified during import time and then use it as a directive argument. If
you want to dynamically generate directives then don’t do that in module-scope – do it in a function.

If you want to use the if __name__ == ’__main__’ system, keep your main module tiny and just import the
main function you want to run from elsewhere.

So, Dectate warns you if you do it wrong, so don’t worry about it.

1.18. __main__ and conflicts 19

http://docs.pylonsproject.org/projects/pyramid/en/latest/designdefense.html#application-programmers-don-t-control-the-module-scope-codepath-import-time-side-effects-are-evil
http://python-notes.curiousefficiency.org/en/latest/python_concepts/import_traps.html#executing-the-main-module-twice
https://pythonhosted.org/setuptools/setuptools.html#automatic-script-creation

Dectate Documentation, Release 0.10

20 Chapter 1. Using Dectate

CHAPTER 2

API

dectate.commit(*apps)
Commit one or more app classes

A commit causes the configuration actions to be performed. The resulting configuration information is stored
under the .config class attribute of each App subclass supplied.

This function may safely be invoked multiple times – each time the known configuration is recommitted.

Parameters *apps – one or more App subclasses to perform configuration actions on.

dectate.autocommit()
Automatically commit all App subclasses.

Dectate keeps track of all App subclasses that have been imported. You can automatically commit configuration
for all of them.

Deprecated: use the explicit App.commit() method instead. Since App.commit() is defined to commit
all dependent applications that are needed this makes it more explicit than this one.

dectate.topological_sort(l, get_depends)
Topological sort

Given a list of items that depend on each other, sort so that dependencies come before the dependent items.
Dependency graph must be a DAG.

Parameters

• l – a list of items to sort

• get_depends – a function that given an item gives other items that this item depends on.
This item will be sorted after the items it depends on.

Returns the list sorted topologically.

class dectate.App
A configurable application object.

Subclass this in your framework and add directives using the App.directive() decorator.

Set the logger_name class attribute to the logging prefix that Dectate should log to. By default it is
"dectate.directive".

classmethod commit()
Commit this class and any depending on it.

This is intended to be overridden by subclasses if committing the class also commits other classes auto-
matically, such as in the case in Morepath when one app is mounted into another. In such case it should
return an iterable of all committed classes.

21

https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Directed_acyclic_graph

Dectate Documentation, Release 0.10

Returns an iterable of committed classes

classmethod directive(name)
Decorator to register a new directive with this application class.

You use this as a class decorator for a dectate.Action or a dectate.Composite subclass:

@MyApp.directive('my_directive')
class FooAction(dectate.Action):

...

This needs to be executed before the directive is used and thus might introduce import dependency issues
unlike normal Dectate configuration, so beware! An easy way to make sure that all directives are installed
before you use them is to make sure you define them in the same module as where you define the App
subclass that has them.

Parameters name – the name of the directive to register.

Returns a directive that when called installs the directive method on the class.

classmethod is_committed()
True if this app class was ever committed.

Returns bool that is True when the app was committed before.

classmethod private_action_class(action_class)
Register a private action class.

In some cases action classes can be an implementation detail, for instance in the implementation of a
Composite action.

In this case you don’t want the action class to be known but not have a directive.

This function may be used as a decorator like this:

@App.private_action_class
class MyActionClass(dectate.Action):

...

Parameters action_class – the dectate.Action subclass to register.

Returns the :class‘dectate.Action‘ class that was registered.

config = <dectate.app.Config object>
Config object that contains the configuration after commit.

This is installed when the class object is initialized, so during import-time when you use the class
statement and subclass dectate.App, but is only filled after you commit the configuration.

This keeps the final configuration result after commit. It is a very dumb object that has no methods and is
just a container for attributes that contain the real configuration.

dectate = <dectate.config.Configurable object>
A dectate Configurable instance is installed here.

This is installed when the class object is initialized, so during import-time when you use the class
statement and subclass dectate.App.

This keeps tracks of the registrations done by using directives as long as committed configurations.

logger_name = ‘dectate.directive’
The prefix to use for directive debug logging.

22 Chapter 2. API

Dectate Documentation, Release 0.10

class dectate.Action
A configuration action.

Base class of configuration actions.

A configuration action is performed for an object (typically a function or a class object) and affects one or more
configuration objects.

Actions can conflict with each other based on their identifier and discriminators. Actions can override each other
based on their identifier. Actions can only be in conflict with actions of the same action class or actions with the
same action_group.

static after(**kw)
Do setup just after actions in a group are performed.

Can be implemented as a static method by the Action subclass.

Parameters **kw – a dictionary of configuration objects as specified by the config class
attribute.

static before(**kw)
Do setup just before actions in a group are performed.

Can be implemented as a static method by the Action subclass.

Parameters **kw – a dictionary of configuration objects as specified by the config class
attribute.

discriminators(**kw)
Returns an iterable of immutables to detect conflicts.

Can be implemented by the Action subclass.

Used for additional configuration conflict detection.

Parameters **kw – a dictionary of configuration objects as specified by the config class
attribute.

Returns an iterable of immutable values.

filter_get_value(name)
A function to get the filter value.

Takes two arguments, action and name. Should return the value on the filter.

This function is called if the name cannot be determined by looking for the attribute directly using
Action.filter_name.

The function should return NOT_FOUND if no value with that name can be found.

For example if the filter values are stored on key_dict:

def filter_get_value(self, name):
return self.key_dict.get(name, dectate.NOT_FOUND)

Parameters name – the name of the filter.

Returns the value to filter on.

get_value_for_filter(name)
Get value. Takes into account filter_name, filter_get_value

Used by the query system. You can override it if your action has a different way storing values altogether.

Parameters name – the filter name to get the value for.

23

Dectate Documentation, Release 0.10

Returns the value to filter on.

identifier(**kw)
Returns an immutable that uniquely identifies this config.

Needs to be implemented by the Action subclass.

Used for overrides and conflict detection.

If two actions in the same group have the same identifier in the same configurable, those two actions are in
conflict and a ConflictError is raised during commit().

If an action in an extending configurable has the same identifier as the configurable being extended, that
action overrides the original one in the extending configurable.

Parameters **kw – a dictionary of configuration objects as specified by the config class
attribute.

Returns an immutable value uniquely identifying this action.

perform(obj, **kw)
Do whatever configuration is needed for obj.

Needs to be implemented by the Action subclass.

Raise a DirectiveError to indicate that the action cannot be performed due to incorrect configuration.

Parameters

• obj – the object that the action should be performed for. Typically a function or a class
object.

• **kw – a dictionary of configuration objects as specified by the config class attribute.

code_info
Info about where in the source code the action was invoked.

Is an instance of CodeInfo.

Can be None if action does not have an associated directive but was created manually.

config = {}
Describe configuration.

A dict mapping configuration names to factory functions. The resulting configuration objects are
passed into Action.identifier(), Action.discriminators(), Action.perform(), and
Action.before() and Action.after().

After commit completes, the configured objects are found as attributes on App.config.

depends = []
List of other action classes to be executed before this one.

The depends class attribute contains a list of other action classes that need to be executed before this one
is. Actions which depend on another will be executed after those actions are executed.

Omit if you don’t care about the order.

filter_compare = {}
Map of names used in query filter to comparison functions.

If for instance you want to be able check whether the value of model on the action is a subclass of the
value provided in the filter, you can provide it here:

24 Chapter 2. API

Dectate Documentation, Release 0.10

filter_compare = {
'model': issubclass

}

The default filter compare is an equality comparison.

filter_convert = {}
Map of names to convert functions.

The query tool that can be generated for a Dectate-based application uses this information to parse filter
input into actual objects. If omitted it defaults to passing through the string unchanged.

A conversion function takes a string as input and outputs a Python object. The conversion function may
raise ValueError if the conversion failed.

A useful conversion function is provided that can be used to refer to an object in a module using a dotted
name: convert_dotted_name().

filter_name = {}
Map of names used in query filter to attribute names.

If for instance you want to be able to filter the attribute _foo using foo in the query, you can map foo
to _foo:

filter_name = {
'foo': '_foo'

}

If a filter name is omitted the filter name is assumed to be the same as the attribute name.

group_class = None
Action class to group with.

This class attribute can be supplied with the class of another action that this action should be grouped
with. Only actions in the same group can be in conflict. Actions in the same group share the config and
before and after of the action class indicated by group_class.

By default an action only groups with others of its same class.

class dectate.Composite
A composite configuration action.

Base class of composite actions.

Composite actions are very simple: implement the action method and return a iterable of actions in there.

actions(obj)
Specify a iterable of actions to perform for obj.

The iteratable should yield action, obj tuples, where action is an instance of class Action or
Composite and obj is the object to perform the action with.

Needs to be implemented by the Composite subclass.

Parameters obj – the obj that the composite action was performed on.

Returns iterable of action, obj tuples.

code_info
Info about where in the source code the action was invoked.

Is an instance of CodeInfo.

Can be None if action does not have an associated directive but was created manually.

25

Dectate Documentation, Release 0.10

filter_convert = {}
Map of names to convert functions.

The query tool that can be generated for a Dectate-based application uses this information to parse filter
input into actual objects. If omitted it defaults to passing through the string unchanged.

A conversion function takes a string as input and outputs a Python object. The conversion function may
raise ValueError if the conversion failed.

A useful conversion function is provided that can be used to refer to an object in a module using a dotted
name: convert_dotted_name().

query_classes = []
A list of actual action classes that this composite can generate.

This is to allow the querying of composites. If the list if empty (the default) the query system refuses to
query the composite. Note that if actions of the same action class can also be generated in another way
they are in the same query result.

class dectate.Query(*action_classes)
An object representing a query.

A query can be chained with Query.filter(), Query.attrs(), Query.obj().

Param *action_classes: one or more action classes to query for. Can be instances of Action
or Composite. Can also be strings indicating directive names, in which case they are looked
up on the app class before execution.

attrs(*names)
Extract attributes from resulting actions.

The list of attribute names indicates which keys to include in the dictionary. Obeys
Action.filter_name and Action.filter_get_value.

Param *names: list of names to extract.

Returns iterable of dictionaries.

filter(**kw)
Filter this query by keyword arguments.

The keyword arguments are matched with attributes on the action. Action.filter_name is used to
map keyword name to attribute name, by default they are the same. Action.filter_get_value()
can also be implemented for more complicated attribute access as a fallback.

By default the keyword argument values are matched by equality, but you can override this using
Action.filter_compare.

Can be chained again with a new filter.

Parameters **kw – keyword arguments to match against.

Returns iterable of (action, obj).

obj()
Get objects from results.

Throws away actions in the results and return an iterable of objects.

Returns iterable of decorated objects.

dectate.query_tool(app_classes)
Command-line query tool for dectate.

Uses command-line arguments to do the query and prints the results.

26 Chapter 2. API

Dectate Documentation, Release 0.10

usage: decq [-h] [–app APP] directive <filter>

Query all directives named foo in given app classes:

$ decq foo

Query directives foo with name attribute set to alpha:

$ decq foo name=alpha

Query directives foo specifically in given app:

$ decq --app=myproject.App foo

Parameters app_classes – a list of App subclasses to query by default.

dectate.auto_query_tool()
Command-line query tool for dectate.

Like query_tool(), but automatically uses all found app classes as the default, like autocommit().

Deprecated: use query_tool(App.commit() instead.

dectate.query_app(app_class, directive, **filters)
Query a single app with raw filters.

This function is especially useful for writing unit tests that test the conversion behavior.

Parameters

• app_class – a App subclass to query.

• directive – name of directive to query.

• **filters – raw (unconverted) filter values.

Returns iterable of action, obj tuples.

dectate.convert_dotted_name(s)
Convert input string to an object in a module.

Takes a dotted name: pkg.module.attr gets attr from module module which is in package pkg.

To refer to builtin objects such as int or object, in Python 2 prefix with __builtin__., so
__builtin__.int or __builtin__.None. In Python 3 use builtins. as the prefix, so
builtins.int and builtins.None.

Raises ValueError if it cannot be imported.

dectate.convert_bool(s)
Convert input string to boolean.

Input string must either be True or False.

dectate.NOT_FOUND = <dectate.config.NotFound object>
Sentinel value returned if filter value cannot be found on action.

class dectate.CodeInfo(path, lineno, sourceline)
Information about where code was invoked.

The path attribute gives the path to the Python module that the code was invoked in.

The lineno attribute gives the linenumber in that file.

The sourceline attribute contains the actual source line that did the invocation.

27

Dectate Documentation, Release 0.10

exception dectate.ConfigError
Raised when configuration is bad.

exception dectate.ConflictError(actions)
Bases: dectate.error.ConfigError

Raised when there is a conflict in configuration.

Describes where in the code directives are in conflict.

exception dectate.DirectiveError
Bases: dectate.error.ConfigError

Can be raised by user when there directive cannot be performed.

Raise it in Action.perform() with a message describing what the problem is:

raise DirectiveError("name should be a string, not None")

This is automatically converted by Dectate to a DirectiveReportError.

exception dectate.DirectiveReportError(message, code_info)
Bases: dectate.error.ConfigError

Raised when there’s a problem with a directive.

Describes where in the code the problem occurred.

exception dectate.TopologicalSortError
Bases: exceptions.ValueError

Raised if dependencies cannot be sorted topologically.

This is due to circular dependencies.

28 Chapter 2. API

https://docs.python.org/library/exceptions.html#exceptions.ValueError

CHAPTER 3

Developing Dectate

3.1 Install Dectate for development

First make sure you have virtualenv installed for Python 2.7.

Now create a new virtualenv somewhere for Dectate’s development:

$ virtualenv /path/to/ve_dectate

The goal of this is to isolate you from any globally installed versions of setuptools, which may be incompatible with the
requirements of the buildout tool. You should also be able to recycle an existing virtualenv, but this method guarantees
a clean one.

Clone Dectate from github (https://github.com/morepath/dectate) and go to the dectate directory:

$ git clone git@github.com:morepath/dectate.git
$ cd dectate

Now we need to run bootstrap-buildout.py to set up buildout, using the Python from the virtualenv we’ve
created before:

$ /path/to/ve_dectate/bin/python bootstrap-buildout.py

This installs buildout, which can now set up the rest of the development environment:

$ bin/buildout

This will download and install various dependencies and tools.

3.2 Running the tests

You can run the tests using py.test. Buildout will have installed it for you in the bin subdirectory of your project:

$ bin/py.test dectate

To generate test coverage information as HTML do:

$ bin/py.test --cov dectate --cov-report html

You can then point your web browser to the htmlcov/index.html file in the project directory and click on
modules to see detailed coverage information.

29

https://pypi.python.org/pypi/virtualenv
https://github.com/morepath/dectate
http://pytest.org/latest/

Dectate Documentation, Release 0.10

3.3 Running the documentation tests

The documentation contains code. To check these code snippets, you can run this code using this command:

$ bin/sphinxpython bin/sphinx-build -b doctest doc out

3.4 Building the HTML documentation

To build the HTML documentation (output in doc/build/html), run:

$ bin/sphinxbuilder

3.5 Various checking tools

The buildout will also have installed flake8, which is a tool that can do various checks for common Python mistakes
using pyflakes, check for PEP8 style compliance and can do cyclomatic complexity checking. To do pyflakes and pep8
checking do:

$ bin/flake8 dectate

To also show cyclomatic complexity, use this command:

$ bin/flake8 --max-complexity=10 dectate

30 Chapter 3. Developing Dectate

https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/pyflakes
http://www.python.org/dev/peps/pep-0008/
https://en.wikipedia.org/wiki/Cyclomatic_complexity

CHAPTER 4

History of Dectate

Dectate was extracted from Morepath and then extensively refactored and cleaned up. It is authored by me, Martijn
Faassen.

In the beginning (around 2001) there was zope.configuration, part of the Zope 3 project. It features declarative XML
configuration with conflict detection and overrides to assemble pieces of Python code.

In 2006, I helped create the Grok project. This did away with the XML based configuration and instead used Python
code. This in turn then drove zope.configuration. Grok did not use Python decorators but instead used specially
annotated Python classes, which were recursively scanned from modules. Grok’s configuration system was spun off
as the Martian library.

Chris McDonough was then inspired by Martian to create Venusian, a deferred decorator execution system. It is like
Martian in that it imports Python modules recursively in order to find configuration.

I created the Morepath web framework, which uses decorators for configuration throughout and used Venusian.
Morepath grew a configuration subsystem where configuration is associated with classes, and uses class inheritance
to power configuration reuse and overrides. This configuration subsystem started to get a bit messy as requirements
grew.

So in 2016 I extracted the configuration system from Morepath into its own library, Dectate. This allowed me to
extensively refactor the code for clarity and features. Dectate does not use Venusian for configuration. Dectate still
defers the execution of configuration actions to an explicit commit phase, so that conflict detection and overrides and
such can take place.

31

https://pypi.python.org/pypi/zope.configuration
https://pypi.python.org/pypi/martian
https://pypi.python.org/pypi/venusian
http://morepath.readthedocs.org

Dectate Documentation, Release 0.10

32 Chapter 4. History of Dectate

CHAPTER 5

CHANGES

5.1 0.10 (2016-04-25)

• Deprecated The autocommit function is deprecated. Rely on the commit class method of the App class
instead for a more explicit alternative.

• Deprecated The auto_query_tool function is deprecated. Rely on
dectate.query_tool(MyApp.commit()) instead. Since the commit method returns an iterable
of App classes that are required to commit the app class it is invoked on, this returns the right information.

• topological_sort function is exposed as the public API.

• A commit class method on App classes.

• Report on inconsistent uses of factories between different directives’ config settings as well as
factory_arguments for registries. This prevents bugs where a new directive introduces the wrong fac-
tory for an existing directive.

• Expanded internals documentation.

5.2 0.9.1 (2016-04-19)

• Fix a subtle bug introduced in the last release. If factory_arguments were in use with a config name only
created in that context, it was not properly cleaned up, which in some cases can make a commit of a subclass
get the same config object as that of the base class.

5.3 0.9 (2016-04-19)

• Change the behavior of query_tool so that if it cannot find an action class for the directive name the query
result is empty instead of making this an error. This makes auto_query_tool work better.

• Introduce auto_query_tool which uses the automatically found app classes as the default app classes to
query.

• Fix tests that use __builtin__ that were failing on Python 3.

• Dependencies only listed in factory_arguments are also created during config creation.

33

Dectate Documentation, Release 0.10

5.4 0.8 (2016-04-12)

• Document how to refer to builtins in Python 3.

• Expose is_committed method on App subclasses.

5.5 0.7 (2016-04-11)

• Fix a few documentation issues.

• Expose convert_dotted_name and document it.

• Implement new convert_bool.

• Allow use of directive name instead of Action subclass as argument to Query.

• A query_app function which is especially helpful when writing tests for the query tool – it takes unconverted
filter arguments.

• Use newer version of with_metaclass from six.

• Expose NOT_FOUND and document it.

• Introduce a new filter_get_value method you can implement if the normal attribute getting and
filter_name are not enough.

5.6 0.6 (2016-04-06)

• Introduce a query system for actions and a command-line tool that lets you query actions.

5.7 0.5 (2016-04-04)

• Breaking change The signature of commit has changed. Just pass in one or more arguments you want to
commit instead of a list. See #8.

5.8 0.4 (2016-04-01)

• Expose code_info attribute for action. The path in particular can be useful in implementing a directive such
as Morepath’s template_directory. Expose it for composite too.

• Report a few more errors; you cannot use config, before or after after in an action class if
group_class is set.

• Raise a DirectiveReportError if a DirectiveError is raised in a composite actions method.

5.9 0.3 (2016-03-30)

• Document importscan package that can be used in combination with this one.

34 Chapter 5. CHANGES

Dectate Documentation, Release 0.10

• Introduced factory_arguments feature on config factories, which can be used to create dependency
relationships between configuration.

• Fix a bug where config items were not always properly reused. Now only the first one in the action class
dependency order is used, and it is not recreated.

5.10 0.2 (2016-03-29)

• Remove clear_autocommit as it was useless during testing anyway. In tests just use explicit commit.

• Add a dectate.sphinxext module that can be plugged into Sphinx so that directives are documented
properly.

• Document how Dectate deals with double imports.

5.11 0.1 (2016-03-29)

• Initial public release.

5.10. 0.2 (2016-03-29) 35

Dectate Documentation, Release 0.10

36 Chapter 5. CHANGES

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

37

Dectate Documentation, Release 0.10

38 Chapter 6. Indices and tables

Python Module Index

d
dectate, 21

39

Dectate Documentation, Release 0.10

40 Python Module Index

Index

A
Action (class in dectate), 22
actions() (dectate.Composite method), 25
after() (dectate.Action static method), 23
App (class in dectate), 21
attrs() (dectate.Query method), 26
auto_query_tool() (in module dectate), 27
autocommit() (in module dectate), 21

B
before() (dectate.Action static method), 23

C
code_info (dectate.Action attribute), 24
code_info (dectate.Composite attribute), 25
CodeInfo (class in dectate), 27
commit() (dectate.App class method), 21
commit() (in module dectate), 21
Composite (class in dectate), 25
config (dectate.Action attribute), 24
config (dectate.App attribute), 22
ConfigError, 27
ConflictError, 28
convert_bool() (in module dectate), 27
convert_dotted_name() (in module dectate), 27

D
dectate (dectate.App attribute), 22
dectate (module), 21
depends (dectate.Action attribute), 24
directive() (dectate.App class method), 22
DirectiveError, 28
DirectiveReportError, 28
discriminators() (dectate.Action method), 23

F
filter() (dectate.Query method), 26
filter_compare (dectate.Action attribute), 24
filter_convert (dectate.Action attribute), 25
filter_convert (dectate.Composite attribute), 25

filter_get_value() (dectate.Action method), 23
filter_name (dectate.Action attribute), 25

G
get_value_for_filter() (dectate.Action method), 23
group_class (dectate.Action attribute), 25

I
identifier() (dectate.Action method), 24
is_committed() (dectate.App class method), 22

L
logger_name (dectate.App attribute), 22

N
NOT_FOUND (in module dectate), 27

O
obj() (dectate.Query method), 26

P
perform() (dectate.Action method), 24
private_action_class() (dectate.App class method), 22

Q
Query (class in dectate), 26
query_app() (in module dectate), 27
query_classes (dectate.Composite attribute), 26
query_tool() (in module dectate), 26

T
topological_sort() (in module dectate), 21
TopologicalSortError, 28

41

	Using Dectate
	Introduction
	Features
	App classes
	Creating a directive
	The Anatomy of a Directive
	Depends
	config dependencies
	before and after
	grouping actions
	Additional discriminators
	Composite actions
	with statement
	importing recursively
	logging
	querying
	query tool
	Sphinx Extension
	__main__ and conflicts

	API
	Developing Dectate
	Install Dectate for development
	Running the tests
	Running the documentation tests
	Building the HTML documentation
	Various checking tools

	History of Dectate
	CHANGES
	0.10 (2016-04-25)
	0.9.1 (2016-04-19)
	0.9 (2016-04-19)
	0.8 (2016-04-12)
	0.7 (2016-04-11)
	0.6 (2016-04-06)
	0.5 (2016-04-04)
	0.4 (2016-04-01)
	0.3 (2016-03-30)
	0.2 (2016-03-29)
	0.1 (2016-03-29)

	Indices and tables
	Python Module Index

